Suoluonnon ennallistaminen tulee lisääntymään merkittävästi tulevina vuosina. Tämä lisää tarvetta myös kustannustehokkaille ennallistamisen vaikutusten seurantamenetelmille. Viime vuosina kaukokartoituksen potentiaalia soiden ennallistamisen seurannassa on tutkittu useassa eri hankkeessa. Tutkimuksissa on havaittu, että etenkin avosoiden pintamärkyyden muutoksia voidaan seurata kohtalaisen tarkasti optisten satelliittikuvien avulla. Tässä artikkelissa esittelemme toimintamallin, jota voidaan hyödyntää ennallistetuilla avosoilla hoitoseurannan priorisoinnissa, etenkin aapasoiden vesienpalautuskohteilla. Ensin satelliittikuvien muutostulkinnalla todetaan vettyneet ja vettymättömät alueet, joista voidaan päätellä epäonnistuneet ennallistamistoimenpiteet ja mahdollisuuksien mukaan myös mahdolliset metsätalouden vettymishaitta-alueet. Tämän jälkeen tehdään priorisoidusti kenttä- tai droonitarkastelu ongelma-alueille ja toteutetaan tarvittaessa korjaavia ennallistamistoimenpiteitä. Tulevaisuuden suurien ennallistusalojen kannalta olisi tärkeää ymmärtää, mitkä tekijät vaikuttavat ennallistamisen onnistumiseen ja miten ennallistamismenetelmiä voidaan kehittää tämän perusteella.
Jatkuvapeitteistä metsänkasvatusta on ehdotettu vaihtoehdoksi avohakkuiden käyttöön perustuvalle metsänkasvatukselle etenkin turvemailla, mutta menetelmän vaikutukset tunnetaan puutteellisesti. Tämän tutkimuksen tavoitteena oli analysoida voimakkuudeltaan kahden erilaisen erirakenteishakkuun (hakkuun jälkeiset puuston pohjapinta-alat 17 m²/ha ja 12–13 m²/ha) aiheuttamia, kahden vuoden aikana tapahtuneita kasvillisuusmuutoksia metsäojitetuissa korvissa sekä testata voiko hakkuiden aiheuttamia kasvilajien runsausmuutoksia ennustaa valtakunnalliseen (VMI) kasvillisuusaineistoon perustuvien mallien avulla. Erirakenteishakkuiden vaikutusta lajistoon sekä lajien ja lajiryhmien runsauksiin tutkittiin kokeellisesti kohteilla, jotka sijaitsivat eteläboreaalisen vyöhykkeen pohjoisosissa Multialla, Heinävedellä ja Juuassa. Kasvilajien vasteita koeala- ja puustotunnuksiin, erityisesti puuston pohjapinta-alaan, tutkittiin koko maan kattavan kasvillisuusaineiston avulla. Lisäksi analysoitiin vastemallien soveltuvuutta hakkuiden vaikutusten ennustamiseen käyttäen kokeellisen tutkimuksen aineistoa testiaineistona. Heinät ja sarat sekä ruohot runsastuivat nopeasti hakkuun jälkeen. Selvimmin hyötyivät pallosara (Carex globularis), metsätähti (Trientalis europaea) ja metsäalvejuuri (Dryopteris carthusiana). Kenttäkerrokseen kuuluvat puut (alle 50 cm) ja pensaat runsastuivat voimakkaammin hakatuilla aloilla, lajeista esimerkkinä vadelma (Rubus idaeus). Mustikan (Vaccinium myrtillus) ja puolukan (Vaccinium vitis-idaea) runsauksissa ei tapahtunut juuri muutoksia. Sammalet yleensä niukkenivat hakkuun myötä, mutta karikkeella kasvavat suikerosammalet (Brachythecium spp.) hieman runsastuivat voimakkaammin käsitellyillä aloilla. Lajimäärämuutokset eivät olleet tilastollisesti merkitseviä. Tutkitut käsittelyt olivat kasvillisuutta hyvin säästäviä. Tulokset ovat todennäköisesti yleistettävissä tavanomaisten harvennusten vaikutuksiin. Kasvilajien vastemallit selittivät havaittujen peittävyysmuutosten suuntaa pääosin hyvin, mutta peittävyyksien tasoissa oli selvää, osin ajourista ja hakkuutähteistä johtuvaa vaihtelua. Tutkimuksen tuloksia voidaan hyödyntää arvioitaessa eri hakkuutapojen vaikutuksia aluskasvillisuuden rakenteeseen, sen merkitykseen metsikön vesi- ja ravinnetaseisiin, metsien uudistumiseen sekä ekosysteemipalveluihin.
Testasimme Ruuhijärven (1960) klassisen kasvillisuusaineiston pohjalta Peräpohjolan aapasuoalueen mesotrofisten sirppisammalrimpinevojen (MeSsRiN), Richardsonii rimpilettojen (RicRiL), rimpisten koivulettojen (RiKoL) ja keskustavaikutteisten rimpilettojen (2 alatyyppiä, RevRiL, ScoRiL) luokittelua klusterianalyysin avulla. Tyypeistä erityisesti Peräpohjolaan keskittyvät Richardsonii rimpiletot ovat huonosti tunnettuja. Kyseessä on pienen aineiston analyysi (noin 50 näytealaa). Ordinaation avulla tulkitsimme aineiston päävaihtelusuunnat ja erityishuomion kiinnitimme klusterianalyysin esiin tuomaan kasvillisuuden hierarkkiseen rakenteeseen ja lajimääriin. Klusterianalyysin testikasvillisuusyksiköt nimesimme yhdistäen kasvisosiologisen Braun-Blanquet luokittelun ja cajanderilaisten suotyyppien nimeämistavan piirteitä. Ennakkoluokitteluista riippumaton testiluokittelu osoittautui hyvin samanlaiseksi kuin näytealojen alkuperäinen luokittelu. Rimpistä koivulettoa ja Richardsonii rimpilettoa lähinnä vastaavat klusterit muodostivat hierarkian alimman tason, jota kutsumme rimpikoivulettoryhmäksi. Richardsonii rimpilettoa vastaavan klusterin tunnuslajiksi saatiin kuitenkin lettokuirisammalen sijasta pohjansirppisammal Warnstorfia tundrae. Boreaalinen rimpikoivulettoryhmä, ja sen sisällä erityisesti Richardsonii rimpilettoa vastaava klusteri, osoittautui Suomen pohjoisboreaalisten aapa- ja palsasoiden rimpinevojen- ja lettojen lajirikkaimmaksi habitaatiksi Ruuhijärven (1960) aineiston perusteella. Lajirikkaudelle löydettiin kasvimaantieteellinen selitys. Tutkimus toi kaksi aineistollista näkökohtaa kysymykseen, onko Richardsonii rimpiletto rimpisestä koivuletosta erillisenä noteerattava kasvillisuusyksikkö pelkän pohja-, kenttä- ja pensaskerroksen lajikoostumuksen perusteella tarkasteltuna. (1) Aineistosta puuttuu tunnettu suursaravaltainen kasvillisuustapaus, joka vaikeuttaa yksikköjen varmaa määrittelyä tällä hetkellä, samoin raja luhtaisempaan kasvillisuuteen on osin auki. (2) Ruuhijärven nykyisestä aineistosta tehty analyysi kuitenkin tuo rimpistä koivulettoa ja Richardsonii-rimpilettoa vastaavien klustereiden välille ekologisesti tulkittavan eron, mikä saattaa viitata kahteen alatyyppiin tai varianttiin. Sen sijaan rimpiset koivuletot ja Richardsonii-rimpiletot/ kuirisammalrimpiletot ovat analyysin perusteella kasvillisuudeltaan kaukana keskustavaikutteisista rimpiletoista (ScoRiL, RevRiL), mikä saattaisi olla hyvä ottaa jollakin tavalla huomioon myös uhanalaisuutta haarukoivassa luontotyyppiluokittelussa.
Katsauksessa tarkastellaan siniheinän menestymistä metsäojitusalueilla ja esitetään näkökohtia siniheinäisten turvekankaiden luokitteluun. Siniheinä on soilla meso-eutrofinen välipinnan laji, joka kasvaa vaihtelevasti mätästäen etenkin nevoilla ja letoilla sekä korpien ja rämeiden ravinteikkailla yhdistelmätyypeillä. Siniheinä kestää suoveden alenemista ja turpeen kuivumista hyvin pitkään. Alun perin märkien rimpisten soiden ojituksilla se jopa runsastuu, koska itse rimpiin siniheinä leviää vasta ojituksen jälkeen. Maamme turvemailla siniheinä onkin keskimäärin yleistynyt ja runsastunut 1950-luvulta ainakin 1980-luvulle saakka. Se taantuu vasta perinteisessä turvekangasvaiheessa, mutta kaikki siniheinäiset kasvupaikat eivät välttämättä saavuta tätä viimeistä ojituksen jälkeistä kasvillisuuskehityksen vaihetta. Siniheinän sitkeyteen ojitusalueilla on monia syitä. Sen juuret ovat paksut ja mutkaiset, voimakkaasti haaroittuneet ja syvälle ulottuvat. Siniheinän tuuletussolukot mahdollistavat juurten tunkeutumisen hapettomaan turpeeseen ja sienijuuri taas edistää toimintaa ilmavammissa oloissa. Runsas kukinta sekä siementen hyvä säilyvyys ja itävyys mahdollistavat vahvan leviämiskyvyn. Siniheinä on tehokas ravinteiden hyväksikäyttäjä, kierrättäjä ja vahva kilpailija. Se lisääntyy hyvin myös kasvullisesti. Siniheinäisillä turvemaan kasvupaikoilla on yleensä fosforin (P) ja kaliumin (K) puutetta. Fosfori sitoutuu tiukasti kalsiumin (Ca) kanssa korkean pH:n turvemailla. Siniheinäisyyttä käytetäänkin heikentävänä lisämääreenä kasvupaikkaluokituksen tarkentamiseen. Uusien havaintojen mukaan siniheinäisyyttä (Sh) esiintyy mustikka- ja puolukkaturvekankaiden (ShMtkg II, ShPtkg II) lisäksi myös varputurvekankaiden (ShVatkg II) ja jopa karuleimaisen varputurvekankaan (ShVarkg II-) kasvillisuudessa. Turvekangastyyppi (ravinteisuustaso) onkin selvintä luokitella muun kasvillisuuden kuin siniheinän avulla, koska syväjuurinen siniheinä on poikkeuksellisen sitkeä laji ojitusaloilla. Näin siitä huolimatta, että sen reliktinomainen esiintyminen muutoin karussa kasvillisuudessa voi monissa tapauksissa indikoida mennyttä korkeahkon N- ja Ca-pitoisuuden (ja pH:n) vaihetta syvemmällä turpeessa. Samoin se voi olla merkkinä ojitusalueiden yleisimpien kasvupaikkaluokkien suhteen poikkeavasta kasviyhteisöstä, jossa korkeasta typpi- ja kalsiumpitoisuuksista huolimatta kasvillisuuden yleisilme on karu korkeista pääravinnesuhteista (N/K) ja (N/P) johtuen.