Artikkelit jotka sisältää sanan 'logistic regression'

Hannu Hökkä, Virpi Alenius, Hannu Salminen. Kunnostusojitustarpeen ennustaminen ojitusalueilla.
English title: Predicting the need for ditch network maintenance in drained peatland sites in Finland.
Avainsanat: forest drainage; ditch network maintenance; logistic regression; site
Tiivistelmä | Näytä lisätiedot | Artikkeli PDF-muodossa | Tekijät
Logistic regression models were developed to predict the condition of ditch networks in drained peatland sites in Finland. The data consisted of observations from two forest inventories in which the need for ditch network maintenance had been assessed in the field by classifying the condition of the ditches in the sample stands. In the analysis an indicator variable which referred to one of two condition categories (in need of repair – not in need of repair) was used as the response variable. According to the results, the probability of being in the poor condition category was higher in sites where the time elapsed since drainage was longer, the geographic location was more northern, peat thickness was greater, and plot inclination was smaller. At a probability level of 0.5, the models predicted the category correctly in 69% of the sites in the modeling data, on average. The models were applied to a growth simulator to study the effect of poor drainage conditions on stand-level growth forecasts.
  • Hökkä, Finnish Forest Research Institute, Rovaniemi Research Station, P.O. Box 16, FIN-96301 Rovaniemi, Finland Sähköposti: ei.tietoa@nn.oo (sähköposti)
  • Alenius, Sähköposti: ei.tietoa@nn.oo
  • Salminen, Sähköposti: ei.tietoa@nn.oo

Rekisteröidy
Click this link to register to Suo - Mires and peat.
Kirjaudu sisään
Jos olet rekisteröitynyt käyttäjä, kirjaudu sisään tallentaaksesi valitsemasi artikkelit myöhempää käyttöä varten.
Ilmoitukset päivityksistä
Kirjautumalla saat tiedotteet uudesta julkaisusta
Valitsemasi artikkelit