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Models reflect reality but also simplify it. The modeller must choose
where the balance lies between simplicity plus understanding and com-
plexity plus realism. (1) Two pictorial and descriptive models of the
surface of a peat-forming bog are given, and a third shows why the
true rate of peat accumulation must diminish over time. (2) A simple
quantitative model of the surface layers is described and leads to the
conclusion that the surface layer is in a steady state, fixing carbon, losing
some by decay, and passing some on to the underlying peat proper.
A similar model for the underlying peat shows that if decay is at a
rate that is a constant proportion of what remains then there is an upper
asymptotic limit to the depth of peat. But if the rate of decay decreases,
because the remaining material is more refractory, then peat accumulation
continues indefinitely though at an ever-decreasing rate. (3) A simulation
model allowing greater realism but diminished understanding is outlined.
(4) Models should be aids, not objects in their own right.
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INTRODUCTION

A model represents one or more features of the
real world, chosen by the modeller as being im-
portant. The model is simpler than the real world
and is therefore easier to manipulate and under-
stand. On one hand is Scylla: if the model is
too simple it will not mimic behaviour in the
real world satisfactorily. On the other hand
Charybdis waits to engulf a too-complex model
in a welter of detail from which all understanda-
bility has departed. The modeller has to choose
the strait path between these opposing dangers,
and to suit the model to its purposes.

It is convenient to recognise three sorts of
purpose:
(TE) teaching or educating;
(UC) understanding the consequences of assumptions;
(PB) predicting behaviour in specified circumstances.

It is also convenient to recognise three sorts
of model:
(Qh qualitative, perhaps pictorial;
(Qt) quantitative;
(S1) simulation — probably complex but realistic
behaviour.

These sorts of models are not usually of equal
value for all three purposes. The following matrix
indicates the commonest usage in a broad way:

Sort of model:

Ql Qt Si

TE ++ ++ .

Purpose: ucC - ++ +
PB . + ++

In what follows 1 give examples of different
sorts of models concerned with peat growth.
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QUALITATIVE MODELS
A pictorial and descriptive model

The simplest sort of model is shown in Fig. 1.
This takes a Sphagnum carpet as an exemplar
of a great many possible models. Matter is added
by photosynthesis at the surface. The Sphagnum
canopy is surprisingly dense and the euphotic zone
— that within which 0.99 of incident light is ab-
sorbed — is barely 2—4 cm deep (Clymo & Hay-
ward 1982). In the darkness below it most of
the leaves die. The dry bulk density is only about
0.03 g em™3 so the structure is open. Water can
run down among the plants easily and gases can
circulate by mass flow as well as diffusion. There
is plenty of O2 so aerobic decay is the dominant
process mediated mainly by fungi.

At first the macroscopic structure survives,
perhaps supported in part by vascular plants
growing among the Sphagnum, rather as isolated
bricks may be removed from a wall without it
collapsing. Eventually, however, the macroscopic
structure does collapse partly from the pressure
exerted by the continually increasing mass above
(most of it water in the unsaturated zone) and
partly perhaps from a seasonal load of snow on
an as yet unfrozen surface. The bulk density in-
creases perhaps 4-fold to 0.12 g cm=3 and the
spaces between structural elements decrease by
the same factor. The volume rate of flow of water
is approximately dependent on the fourth power
of the channel size, so the resistance to flow in-
creases by about 44 = 256-fold: the peat as it
is now has become much less permeable, and
surplus water runs off laterally. For most of the
year there is surplus water, and even when there
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has been a drought the layer which has begun
to drain fills rapidly again on the first substantial
rain. Indeed the whole system is beautifully self-
regulating for the hydraulic conductivity increases
logarithmically upwards (Bragg 1982, shown in
Clymo 1991). As the water level rises so it be-
comes easier for it to flow away, just as it does
in a V-notch weir. The residence curve, shown
in Fig. 2, is 'S’ shaped, and for two-thirds of the
time the water table fluctuates by no more than
a few centimetres.

In the porous surface layer O2 is abundant.
Below the water table micro-organisms use up
the O2 in solution where it is ten-fold less abun-
dant on a volumetric basis than it is in air. It
is replenished mainly by diffusion, and this is
about 104-fold slower in water than in air. Nor
are there comparable mass flows. In consequence
the micro-organisms create anoxic conditions and
below this level decay — mainly by bacteria —
is anaerobic. This anaerobic decay is much slower,
for reasons which are unclear, than the aerobic
process and it is this slowness of decay that is
the direct cause of peat accumulation.

The term acrotelm was introduced by Ingram
(1978) for these surface layers down to the depth
to which the water table drops in a dry summer.
The acrotelm is a region of many and varied
changes. Tt takes in CO?2, converts it to plant ma-
terial, modifies it in various ways, then passes
it on to the lower layer — the catotelm. The acro-
telm, once established, remains of approximately
constant thickness at perhaps 10-50 cm. The
catotelm however increases in thickness for at
least 5-10 millennia, and the catotelm is the true
site of peat accumulation.

Proportion
0 05 10
"1, Gas ;
Liquid ’ O Fig. . Pictorial model of the sur-
i face of a Sphagnum-dominated
- peat-bog with a representative
Sold —=2|  monocotyledonous rooted vascular
: plant.
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Fig. 2. Four structural layers (left): A, green; B, litter-peat (Malmer 1991): C, collapse; D, peat proper. Four functional
zones (right): 1, euphotic; 2, aerobic decay; 3, transition; 4, anaerobic decay. Zones 24 move up and down through
‘he structural layers with an annual cycle. The watertable and the residence—time diagrams are for he 1991/92 hydrological
year. The box in the residence—time graph defines the proportions 0.16 to 0.84 (one S.D.) on either side of the mean

in the Gaussian case.

Of course there are many variants of this
qualitative model. The influence of roots in adding
mass below the surface (Wallén 1992), or as con-
duits into the catotelm for gases, and the influence
of dwarf shrubs supporting the acrotelm structure
are obvious examples. The model can also be
extended more radically to include trees.

A structure-and-function-model

A second version of the model is shown in Fig.
2 based on Clymo (1992). Here we see a distinc-
tion made between four layers of structure at the
left (green, litter-peat, collapse, peat proper) and
four functional zones at the right (euphotic, aero-
bic decay, transition, anaerobic decay). These
layers and zones have been described above, but
the model of Fig. 2 makes explicit that the process
zones do not in general bear a fixed relation to
the structural layers: they move up and down
through them seasonally and, over the course of
years, the acrotelm moves up past any particular
piece of plant matter.

A pictorial process model

The model in Fig. 3 enshrines the essential truth,
that if the rate of input is constant but decay is
proportional to the whole mass accumulated so
far, then the true rate of accumulation decreases
with time and (if the proportional rate of decay
is constant) eventually approaches zero: the sys-
tem makes an asymptotic approach to a limiting
maximum depth. Whether this is realistic or not
is not, here, the issue. The model is useful in
so far as it points to an unavoidable consequence
of simple and not unrealistic assumptions.

QUANTITATIVE MODELS
The aim

Quantitative models increase understanding and
allow tests against observable behaviour. Those
cast in the form of analytical solutions to model
equations that enshrine the assumptions are par-
ticularly useful as one may see immediately and
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Fig. 3. Pictorial diagram indicating

- how the true rate of accumulation

N decreases with time. At the left, at
NO MORE peat an early stage of development, the
by end of ~ annual rate of addition exceeds the
year ) combined loss by decay from all
- depths. At the right, when much
- more peat has accumulated, the an-
nual addition at the surface (which
is as green and healthy as it was
earlier) is exactly the same but
losses occur throughout a much
greater mass of peat. Collectively
they almost equal the addition, so
there is virtually no net accumul-
ation.

with certainty what consequences follow from the
assumptions.

The acrotelm

Consider, first, the dynamics of the acrotelm, and
follow the ideas illustrated in Fig. 3. Assume that
organic matter is added at the surface at a rate
p (for productivity) that is constant from year
to year. Let the total organic matter accumulated
to date be M. Decay affects the whole of this.
For simplicity assume that a constant proportion,
o, of M decays each year. We may now write
these assumptions in the continuous form as:

dM/dt = p — aM (H
The solution to (1) is:
My = (p/o)(1 — exp |- at]) (2)

The graph of this is shown in Fig. 4b. One can
see that the accumulated mass approaches an up-
per limit, which equation (2) shows to be p/a.
This model is simple, explicit, and its conse-
quences are readily understood. But the assump-
tion that the rate of decay is constant may seem
unrealistic. There are few suitable sets of data
on which to test it. One set for the sub-Antarctic
moss Chorisodontium aciphyllum (Baker 1972)
is shown in Fig. 4a. A constant rate of decay
amounts to a negative exponential decline in mass
with time: for decay alone

dM/dt = — oM (3)
from which it follows that
M¢Mg = exp (—ot) 4)

The data suggest that a sigmoid shape might be
more accurate than the negative exponential.
There are many equations that give a sigmoid
shape. Given the experimental scatter there is no
way of deciding whether one is a better fit than
another, and none of them has simple biological
assumptions behind it. For illustration consider:

MMg=1-(0-wW(l +exp[-r(t-T] (5

Here v is the base toward which the curve tends
as asymptote, and represents the proportion of
refractory material; r determines the steepness of
the slope just as o did in (2); and T is the time
at the steepest downward slope. The solution is
given in Clymo (1991) and is shown in Fig. 4a.

Should one choose (4) or (5)? Within the range
of the data they produce very similar peat growth
curves (Fig. 4b) which begin to differ only after
60 years or so when the refractory element as-
sumed in (5) begins to exert its influence. The
assumptions behind (4) are easily grasped, have
a clear biological meaning, and require only one
parameter, o.. Equation (5) does not have an easily
understood biological origin — it is simply an
ad hoc equation with the necessary shape — and
it requires three parameters. But it is a better fit
to the data in Fig. 4a. Equation (4) might be said
to be indigenous to the situation while (5) is exotic
(Skellam 1972). The modeller must judge where
the balance of advantage lies.

The curves of Fig. 4a refer to moss-banks in
the sub-Antarctic, but similar curves must hold
for the acrotelm of boreal peatlands. An important
concept now appears. The slope of the curve at
any point has the physical nature of a mass per



SUO 43(4-5), 1992 131

(b)

60
gC)
g 40
i
S
£ 20
o
o
@]
R 0

0 20 40 0

Time (a)

20 40 60 80 100

Time (a)

Fig. 4. (a) Course of decay of Chorisodontium aciphyllum. The fitted shapes are those of equation (4) — the negative
exponential and (5) — a sigmoid. (b) Course of accumulation of dry matter in the acrotelm based on equation (2)
which incorporates negative exponential decay (4), and the equation in Fig. 9 of Clymo (1991) which incorporates
sigmoid decay (5). The base of the acrotelm is put at 80 years and the slope there gives p', the rate at which the
acrotelm supplies matter to the catotelm. The depth of the acrotelm is similar in both cases, but for the negative exponential

p/p = 0.18 whereas for the sigmoid it is 0.43.

unit area divided by time i.e. its physical dimen-
sions, ML—2T—!, are those of a productivity. At
t = 0, before decay has begun, the slope is, in
fact, the productivity p in equation (1). At the
point where the water table engulfs the bottom
of the acrotelm the slope shows the rate at which
dry matter is entering the catotelm. It is exactly
analogous to the addition at rate p to the acrotelm.
Let it be shown as p' Then equation (1) can be
extended to define the whole acrotelm by

dM/dt = p — aM - p' = 0 (6)

This makes explicit that the acrotelm, once estab-
lished, is not increasing in mass (thickness). It
takes in matter at rate p, modifies it, and passes
what is left on at rate p' to the catotelm. The
quotient p'/p is about 0.1-0.2 (Clymo 1984).

The catotelm

One may apply the same approach to the catotelm.
Matter is added at a rate p' at the top, then decays.
In the acrotelm there was some evidence to guide
the choice of decay rule, but in the catotelm, where
time scales are in millennia rather than in decades,
there is none. One may make assumptions, then
devise testable consequences. The original as-

sumption (Clymo 1984) was that p' and the pro-
portional rate of decay, o, were constant. One
consequence was that age vs depth (as cumulative
mass per unit area) curves should be concave.
Many examples are so, though some are not (Cly-
mo 1991). Given the simplicity of the assumptions
it is surprising that any examples give a reasonable
fit. An important consequence of the model is
that there is an asymptotic maximum to the depth
of peat at p/o. It seems, then, that the simple
assumptions that decay rate is directly propor-
tional to the mass remaining, and that p' and o
are constant over many millennia, are broadly
sufficient. But that does not show that they are
correct. One may make other assumptions using
the method in the Appendix to build a model.
In Table | and Fig. 5 are the consequences of
four such assumptions. All specify that the rate
of decay is applied to the mass remaining. The
first case is that already described: the rate is
constant and does not itself depend on how much
has already decayed. The second case assumes
that the rate declines linearly with the amount
remaining i.e. that the material left is increasingly
refractory, but does still decay. The third case
is similar but assumes that the decline follows
a concave, specifically quadratic curve. The last
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Table 1. Solutions of peat growth equations (Appendix).

Decay rule Name MT Limiting shape
o = a Constant — [1 — exp (-a'T)] Asymptote p'/a’ as T — oo
a
P
o = au Linear — [In (I + a'T)] Logarithmic with T
a
p
o = ap? Quadratic V1+2a'T~1 Parabolic with T
a
u<r, a' = 0 Refractory e Linear, slope pr as T — oo

case assumes a proportion of material is complete-
ly refractory and does not decay however long
it is left (but there is not a general analytic solution
for this case). The consequent equations specify-
ing the time-course of mass accumulation, MT,
are shown for the first three cases in Table 1
and in Fig. 5b. The limiting shapes form a series.
The first, constant, case — the one considered
in Clymo (1984, 1991) — is asymptotic to an
upper limit of p'/ct’. The other three are not asymp-
totic. In the second, linear, case MT changes with

(@)

— 100 3 Constant -
(tj ]
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<§ 005 Quadratic E
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the logarithm of time; in the third, quadratic, case
MT is a parabola with time. Both have the charac-
ter that, though there is no maximum depth, the
depth increases at an ever-decreasing rate. The
fourth, refractory, case (not shown in Fig. 5) dif-
fers in settling to a steady rate of increase of
p'r, where r is the proportion of matter that is
completely refractory.

These different models thus have different
consequences. The evidence against which they
may be tested is age vs depth curves. The results
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Fig. 5. (a) Assumptions about how the decay coefficient, a', depends on the proportion of mass remaining. For the
top line a' (Table 1) is constant; for the middle it decreases linearly, corresponding to increasingly refractory material:
the bottom line is quadratic and shows a more rapid transition but to a smaller proportion of refractory material. (b)
Course of peat accumulation using the three decay models of Fig. 5(a), following the equations in Table I. In each

case p' = 0.02 g em2a~!, a' = 0.00015 a~!

(values similar to those in Fig. 6). The constant decay tends toward

an asymptote at p/a' = 133 g cm~2. The other two cases increase indefinitely but at steadily decreasing rates.



of such tests are shown in Fig. 6. There is no
compelling reason for choosing one of the three
models rather than another except that the preci-
sion of the estimation of the parameter, o, is
rather greater for the constant case than for the
linear and quadratic ones. The evidence is a gentle
curve. Given the fact there will always be some
random variation in such age vs depth curves span-
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ning five mellennia or more then it is never going
to be possible to make a convincing choice be-
tween these models on this sort of evidence. The
only real reason for preferring the constant model
is that it is the simplest — but it is not the most
plausible. We really need models that predict
more complex behaviour, or predict the behaviour
of more variables. Soon after setting off this route

O .
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0
(d)
Quadratic decay
50
100

0 0 2000 4000 6000 8000 10000
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Fig. 6. Age vs depth (as cumulative dry mass below the surface) for the Point Escuminac peatland, New Brunswick
(Warner, Clymo & Tolonen 1993). (a) Data. (b) Fitted according to the constant decay model. (c) Fitted to the linear
decay model. (d) Fitted to the quadratic decay model. A total of 22 samples were taken for C-14 measurements. These
were calibrated using the 20-yr data in the programme CALIB of Stuiver and Reimer (1986). The oldest five samples
were beyond the reach of calibration at present. Of the 16 with C-14 age <7250 radiocarbon yr four gave three alternative
dates. The line was fitted using the simplex procedure of Nelder and Mead (1965). Ages and masses were standardised
to unit mean. Let the horizontal and vertical differences from the fitted line be u and v respectively. The optimised
function was the sum of squares of the nearest distances u~v</(u< + v<), weighted by the inverse of the uncertainty
in the age and the number of alternative dates. The fitted parameter values. p' and a'. are:

Decay model p' a' f r
(g em™2a~1) @)

Constant 0.0231 [36] 0.000104  [59] 0.31 0.95

Linear 0.0248 [38] 0.000215 [121] 0.27 0.98

Quadratic 0.0256 [44] 0.000288 [173] 0.34 0.99

Values in brackets are standard errors as % of the mean. The function value at the minimum is shown as 'f’. The
correlation between parameters as t'. The high values of r reflect the fact that p' is determined by the general slope.
while a' is set by the concavity. A small change in one can be closely compensated by a small change in the other.
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we reach simulations, where realism of behaviour
increases, but understanding and testability de-
crease.

SIMULATION MODELS
General

Simulation models may be more realistic than
the quantitative ones just described but they are
black boxes, whose behaviour can be studied by
experiment but cannot be predicted exactly.
One of the most ambitious simulation models
of peatland growth was constructed by Wildi
(1978). He included amount of peat, amount of
water, amount of solutes, biomass of bog plants,
and biomass of fen plants. The processes were
controlled by 20 parameters. The values for the
five variables were specified at each point in the
simulated bog. Adjacent sites were specified as
being at different heights, thus generating flow
of water and solutes. The model simulated peat
growth in relation to topography, and (in a fairly
crude way) successional changes. Some of the
predictions could be tested in a qualitative way.

'Forrester' simulation models

A powerful aid in constructing simulation models
is the systematic approach developed by Forrester
(1961), illustrated in outline in Fig. 7.

Boxes contain amounts of a chosen variable.
Arrows indicate flows. These flows must be of
the same notional substance. In a peat growth
model, for example, plant matter can 'move’ from
the acrotelm to the catotelm. But it must be kept
separate from the parallel flows of water, energy
and length. One may imagine circumstances in
which it is only mass that is of concern to a
modeller, who might then treat plant matter and
water as combinable aspects of mass. Valves on
flows, shown by 'butterfly' or 'luggage label' sym-
bols control the flows. Each represents a graph
showing how the rate of flow responds to other
variables. The variables involved are shown in
the diagram by a broken line linking the valve
and a box, indicating a flow of information about
an amount. There is no limit to the sorts of boxes
and valves between which information may flow.
Parameters involved in a valve control are shown
inside circles linked to the valve by an information
flow. (Three other symbols may be used. Sources
and sinks outside the model may be shown in

‘cloud’ symbols. Auxilliary variables are shown
in lozenges and are used for convenience where
some summary value is needed for control or out-
put. Delays can be modelled in detail, but have
a special compartmental symbol for convenience.)

The control of a single process — decay ac-
cording to the constant model of Table 1 — is
shown in Fig. 7. If one ignores the effects of
temperature and water content then this might
appear in a PASCAL programme implementing
the model as:

Dt = 0.1; {iteration interval}
REPEAT
{First change ALL the amounts in boxes .. }

-Pl = Pl + (RPgPl - RPIPc - RPICI) * Dt;
'{.. and THEN calculate all the new rates)}

iQP]CI := PICI * Pl; {plus some function of T1 and
W1}

UNTIL Done;

Here PI represents the amount of dry matter in
the acrotelm, while RPgPI is the input to it (prod-
uctivity) and RPIPc is one output (of decayed
material into CO2). The loop is repeated as many
times as the modeller chooses or the programme
allows. (The greatest benefits come when model-
ler and programmer are the same person.)

It is important that no rate should be calculated
before all the amounts it depends on have them-
selves been calculated or, initially, set.

In general, linear relations such as that shown
above in the calculation of RPICI, can lead to
unstable behaviour if the value of PI, for example,
goes outside the designed range. 'Limiting' rela-
tions, such as those in Fig. 5, are safer as well
as being more realistic.

Once a model has been specified it can be
duplicated on a grid and can include interactions
between variables at adjacent grid sites. An ex-
ample of such a simulation is given by Hayward
and Clymo (1983).

Simulations of this kind may be realistic in
that they produce credible patterns of behaviour.
If they have only a few parameters and the varia-
bles have differing patterns of response which
may be compared with data then it may be possi-
ble to optimise the parameter values, as Rydin
and Clymo (1989) did. But usually there are too
many parameters or too little data. In such cases
one may try changing parameter values by, say,
10% and finding out which changes produce large
changes in behaviour. Understanding may be a



)

A
A

g=Green

SUO 43(4-5), 1992 135

Q Atmosphere m m

X )

Coore

i)

. I=Litter—peat
[ %% P D
o—r—r T T N——
’I\D B it
Dq K @ ] aoee. c=Collapse

X K

p=Peat proper

-
o e ¥ w ] C ch@---t_ag [w

D

e U

oo oo

I Cp ’-ﬁ) Pp ﬁ Mp | ( ™ k{ Ep l | W
C= P= M= T= E= W= =
co, Plant mass CH, Temperature Energy Water (Neighbours)  Length

Fig. 7. Outline of a Forrester simulation model of an element of a peatland. It includes flows of CO2 (C), plant/peat
organic matter (P), CHq (M), energy (E), water (W), 'length' (L), and the derived property temperature (T). The four
layers correspond to those in Fig. 2: green (g), litter-peat (1), collapse (c) and peat proper (p). In practice it might
be useful to subdivide some of these. In order to run the model the functional relations of all the valves would need
to be known or assumed. Only one is shown — that from Pl to Cl. The rate RPICI is shown as determined by the
difference equation version of equation (3) and, in an unspecified way by temperature and water content.

casualty. Perhaps the greatest value of such simu-
lations is that they force the model maker to think
carefully about what processes are occurring and
what controls them.

CONCLUSIONS

We all make and use models as aids. And as
aids they are useful. But they are no substitute
for observation and experiment.
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APPENDIX

A general quantitative model of peat dry matter
growth may be constructed. First, the rate of decay
is specified and proportional losses integrated
over the history of a particular element of mass.
Secondly, the present total mass is obtained by
integrating over all the elements of mass.

Let the dry mass now be m and that before
decay be m(, dimensions ML~2. The proportion
remaining is 1 = m/m(Q. Define a decay rule such
that the ]laroportional rate of decay, o' with dimen-
sion T~1, is given by o' = f(u). A special case
is o constant. Let t be time.

(hH Then dwdt = —a'p = — p f(w

mg 1 1
Hence ——dp=-]dt
I

A

where t is the age of the element of peat. This must
be solved and rearranged to give p = (7).

(22) The total mass at time T is MT with dimensions
ML™<. Let p' be the rate of addition (productivity) of dry
matter with dimensions ML-21—!

T
M-;-=p'fp.d1.
0

This process requires two successive integra-
tions with an intervening rearrangement to make
pu = f(t). For all but simple decay rules there
may be no analytic solution. Three specific solu-
tions are given in Table I.





